
International Journal of Theoretical Physics, Vol. 34, No. 9, 1995 

Some Solvable Eigenvalue Problems 

C a o  x u a n  C h u a n  1 

Received December 14, 1994 

An extension of the concept of supersymmetrization is proposed in which the 
couple of separated second-order differential equations can be fit into a new 
scheme with existence of a double degeneracy of their eigenspectra. As illustration 
of the method, some exactly solvable problems related to the U(1, 1) group are 
discussed explicitly. 

Conventional  supersymmetric systems are usually considered as part o f  
the classes of  either unbroken or broken symmetry.  The first category is 
related to the existence of  a positive-energy ground state leading to a strictly 
complete degeneracy for the eigenspectrum, for instance, in the SU(2) case. 
The second one means existence o f  a zero-energy ground state which is not 
degenerate so that the double degeneracy is not complete.  I f  A is the Witten 
(1991) index, then A = 0 for the first case and A = +_1 for the second one. 

For clarity, we recall first some definitions and notations about conven-  
tional supersymmetry. Consider two generators A1, A2 and two matrices QI, Q2: 

AI d + v ,  Az d 
dx dx 

and consider the system (t~l, qJz) such that 

AI~I = k~J2, A2t~2 = k~l (1) 

k is a constant parameter, and v is a function usually referred to as the 
"superpotential? '  These quantities obey the "graded algebra" 
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Q2 = Q~ = 0 

{QI, Q2} = H ,  H = (  HI 

HI = A2AI, 1-12 = AIA2 

[QI, H] = [Q2, HI = 0 

(2) 

(3) 

(6) 

The symbols { , } and [ , ] mean anticommutation and commutation opera- 
tions, respectively. Expression (2) corresponds to nilpotency, while (4) denotes 
conservation of the "supercharges" QI and Q2; H is the Hamiltonian of the 
system. The quantity v can be defined as 

1 d 2 
{A2' At} = dx----- 5 - v 2 

1 
[a2, a l]  = - v '  (5) 

Consider now another system (t~i, t~2) and the generators AI, A2 defined as 

,,~ d - ~ ] ,  ~=o~,s~)  l,~ - u + ~  A1 = (fif2) dxx q- t* - 2 f , / /  

u, 3"1, f2 may in principle be any analytic functions. Let (o 
Then 

Let 

Then 

with 

u m 

Q12-- Q2z= 0 (2b) 

{Q1, Q2} = H ,  ~ =  1 0 (3b) 

H1 = AzAI, H2 = AtA2 

[Q~, H] = [Q2, H] = 0 (4b) 

AI+t =/o[12, A2+2 = k+l 
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H {D , , ;  

-- { d2 I( lf~)2 ( 1 (f~)']l 
H2 = flf2 -d~xZ - u + ~-fl ) + u' +2\ f2JJJ (6) 

It is instructive to point out that the result (6) was derived from 
the generalized theory of coupled differential equations (Cao, 1992, 1994) 
and the present development can be regarded as consequences of this theory. 

We have here the "graded algebra," which, however, is not exactly 
identical to Witten's case, since the commutation relations equivalent to (5) 
cannot be expressed in a simple manner. We find 

Ira/ 1 {A2, AI } = f l f 2  - u 2  - 
~x2 -8 \ t-f  (I ,] + \ f 2 ) J 

2 u l ~ - f i J  - -4  \ \ f , )  \fzJ JJ 

2 \\fl ] ltf2 ,} ] 

1 {f', + f~  u '  1 ((f~' _ (~ '~ l  
+ ~- u l*  IU + + -7 \ \ iU \ i , ) )J  

These results enable us to extract two significant remarks concerning the 
choice of the functions fl,  f2- 

1. fl  and f :  are assumed to be constants. 
2. The are inverse functions in the sense f = fl = cdf2, ci being 

a constant. 

For remark 1 we can see that (5b) become identical to (5) if u = v or in 
other words, u can be identified as the superpotential. For remark 2, in which 
f~lft = -f~/f2, this superpotential is v = u - �89 These cases do not bring 
anything new because they are merely different aspects of  the Witten 
formulation. 

Generalization 
Obviously, when the functions fi and f2 are not governed by the con- 

straints 1 or 2, the usual concept of superpotential become invalid and the 
situation requires a new approach. 
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Here we focus on some simple situations where the system can be 
solved exactly. 

The simplest situation concerns the choice f~ = f2 = f with u = al + 
Bf'/f, al and B being constant_ parameters. 

The Hamiltonians Hi and H2 defined in (6) become 

 l=I2Ed2 ] - ~  - V l ( a l ,  B ,  x )  , 

f2Vl(AI, B,x) =AZf2+ ( B 2 - 1 ) f ' 2  

H2 =f2[ d2 ] "-~ -- V2(al, B, x) 

(7) 

Consider two types of constraints: 

(a) f ,2  _ f , 7 =  +1 
(b) f , 2 _ f , 7 = _ l  

leading to five cases: 

(a-l) (a-2) 

(8) 

(a-3-1) (a-3-2) (b-l)  

f(x) x sh x sin x cos x ch x 

Note the equivalence of (a-3-1) and (a-3-2) relative to the shift x 
---) x + "rr/2. 

They lead to a family of five Hamiltonians, which in fact, may have 
some similarities, which will be examined through a single unified approach. 
From (8) it is found that (f,2 = t + If 2) 

where two parameters l and t have been included and are defined as follows: 

(a-l)  (a-2) (a-3-1) (a-3-2) (b-l)  

I 0 +1 - 1  +1 +1 
t +1 +1 +1 +1 - 1  
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Exact Solutions 

The eigenfunctions of (6) can be expanded in the form 

I ~}i) = s a(j!)n exp 
m=l t L r--~ "~ ~- x 

(10) 

with the following notations: the 7- signs refer to j = 1, 2; (i) denotes the 
five cases (a-l), (a-2) . . . .  ; r} i), m are parameters. 

From now on, these indices will be omitted for simplicity. 
Replacing (10) in (6) and using (8), it can be verified that the coefficients 

a}i }, must obey a two-term recursion relation 
2 

( 1 )  [ ( ( 2 )  2 ) (r 2(Q 7- -~)'~'m 
a , . -  a, ] 

x / ( r + m -  2) 2 -  a21 + l  B -  + + _ 2)51 
l ( r +  m - 2 )  am-2 

a'(B - ~)x  [t((r+ m)(r + m - 1 )  - (B2 - 1 ) )  - k2] = 0 (11) 
+e r + m  am 

which can be solved by standard methods: 
For the case m = 0, let ao ~ 0 and al = 0. The eigenvalues are given by 

[ l ] 
k ~ =  t r ( r -  1) + ~ - B  2 (12) 

If m = N + 2, let a N @ 0 and aN+ 2 . . . . .  0 ;  then the parameter 
r must be a solution of the equation 

[ / 1\2'~ l(r+N)2-1a~+llB~))+ ( r+N)2 -0  (13) 

Two kind of solutions are possible: 

(r + N) 2 = B ~ - 
2 

The first one is dependent on the parameter l, while the second one is 
independent of both l and t. 
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kZu = 2(N + 1)[ N I- 

In other words, 

D i s c u s s i o n  

For the cases (a-3-1) and (a-3-2) (the trigonometric functions) l is nega- 
tive, so that the first kind must be excluded. One is left with only one 
possible solution, 

This result is also valid for the case (a-l), where l = 0. 
The hyperbolic cases (a-2), (b-l) with l positive lead to two solutions: 

r = B -T- -- N (15) 

T h e  S p e c t r u m  

I. For the cases (a-l), (a-3-1), (a-3-2) with (14), we obtain 

~22,N = k2,N-1 

which expresses the double degeneracy except for the ground state (N = 0). 
This is the case of unbroken symmetry discussed above and denoted by 
(k~,u). 

II. The case (a-2) has two possible eigenspectra, so that in addition to 
the result (16) there is a second one given by 

1 + (at - N ) ( a l  - N - 1) (17 )  k2,N =-- k2,N = - B  2 q- -~ 

which indicates a complete degeneracy related to broken symmetry (k~,u). 
III. Finally, for the case (b-l), we have the same type of eigenspectrum 

(17), but the spectrum of  type (16) is ~- 

S h a p e  I n v a r i a n c e  

Returning to (9), it can be seen that 

f2Vl(a 1, B, x) =fZVl(a l ,  B - 1, x) + t((B - 1) z - B 2) (18) 

which expresses the shape invariance condition of Gedenshtein (1983), so 
the eigenspectra can be inferred alternatively from the relation 
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The parameter t is given in the table above. As expected, these results are 
in exact agreement with the ones found by a direct approach for the spectra 
of type (k,Zu)- 

We may relate the present formulation to the model suggested earlier 
by Lahiri et  al. (1988) ,  who imposed a four-parameter group structure in the 
ladder operators A, A + 

A = e iy x)  -~x - i f ' ( x )  ~y  + v(x)  

A + = e - i '  - f ( x )  - i f ' ( x )  ~y + v(x)  

v ( x ) , f ( x )  are arbitrary functions and y is considered as an auxiliary parameter. 
These operators obey the following algebra: 

0 
A3 = - i  - - ,  [A, A § = - 2 a  A3 - b l  

Oy 

[A3, A]  = A, [A3, A +] = - A  + 

with 

a = f,2 _ f,)~, b = 2( f 'v  - fv ' )  

The Hamiltonians are defined as H = �89 A +} corresponding to the eigen- 
value equation 

Hg(x ,  y)  = kZg(x, y)  

where g(x, y)  is separable in the sense 

g(x,  y) = +(x)e  i"y 

n is a parameter. 
For the special case where a = 1 and b = 0, A, A § can be identified 

with the generators of a U(I, 1) group. 
Three types of Hamiltonians were considered by Janussis et al. (1990) 

and Samantha (1993) with f = x, sin gx, cos vx,  with Ix and v constant 
parameters; a complete solution of the first case was given. 

The following remarks may then be instructive: 
I. In the present work, it can be verified that with an appropriate choice 

of the quantities al, B the function O(a) becomes in fact identical to the 
eigenfunctions qJ. 
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More precisely, one must take u(x) = al f(x) ,  f being one of the five 
functions mentioned above. For instance, for f2Vl, in the case (a-3-1), the 
choice will be al = 1, B = n + �89 

II. The interest of the present formulation is therefore: 
(a) The case (a-2) can be added to the list of functions mentioned in 

Janussis et al. (1990) and Samantha (1993). 
(b) The case (a-I), which had already been solved by these authors, is 

confirmed in the present work. 
(c) These five cases can be approached in the frame of a single unified 

method which leads to a similar two-term recursion relation. 
(d) The concept of shape invariance remains valid. 
(e) The broken and unbroken symmetry is conventional supersymmetri- 

zation are mainly related to the parity of the superpotential (Cao, 1990; 
Ralchenko and Semenov, 1992; Dutt et al., 1993), while the present approach 
obviously is not subject to this constraint. This may justify in a sense the 
occurrence of the two types of eigenspectrum in cases (a-2) and (b-I). 
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